From: samuel@... Date: 2018-07-05T21:55:01+00:00 Subject: [ruby-core:87822] [Ruby trunk Feature#13618] [PATCH] auto fiber schedule for rb_wait_for_single_fd and rb_waitpid Issue #13618 has been updated by ioquatix (Samuel Williams). > They have their own IO scheduler because ruby had just native threads, which are bad as IO scheduler. Thanks so much for your answer, it's very detailed and gives me a clear picture about what you are thinking. In my experience, threads simply don't scale as as well as fibers, there is too much overhead. That being said, you are right they are sort of normative, the defacto, mechanism by which all things can become asynchronous. The problem with Ruby threads is that the are mutually exclusive when running Ruby code so they are pretty tricky to use in practice. > With Thread.scheduler= it becomes: .... There is no need to ever use Mutex, Queue within `Thread.scheduler=` threads. That's the whole point. Because it's cooperative concurrency. Just spawn your fibers, and the scheduler will swap them out when the block. If you want a "queue", use an array. Or, whatever data structure suits your requirements. > Doubtfully there will be so huge performance difference between > "explicit Thread.scheduler= + that's scheduler synchronization primitives" > vs "standard hybrid Thread with standard hybrid Mutex/Queue". In my experience, there is a large difference. As you saw in my article comparing Puma with Falcon. > Ruby will never be that low level language that will gain serious performance through careful separation of "green" vs "native" thread concepts. Falcon shows that it is possible, but replace in your statement native threads with processes due to limitations in Ruby. ---------------------------------------- Feature #13618: [PATCH] auto fiber schedule for rb_wait_for_single_fd and rb_waitpid https://bugs.ruby-lang.org/issues/13618#change-72840 * Author: normalperson (Eric Wong) * Status: Assigned * Priority: Normal * Assignee: normalperson (Eric Wong) * Target version: ---------------------------------------- ``` auto fiber schedule for rb_wait_for_single_fd and rb_waitpid Implement automatic Fiber yield and resume when running rb_wait_for_single_fd and rb_waitpid. The Ruby API changes for Fiber are named after existing Thread methods. main Ruby API: Fiber#start -> enable auto-scheduling and run Fiber until it automatically yields (due to EAGAIN/EWOULDBLOCK) The following behave like their Thread counterparts: Fiber.start - Fiber.new + Fiber#start (prelude.rb) Fiber#join - run internal scheduler until Fiber is terminated Fiber#value - ditto Fiber#run - like Fiber#start (prelude.rb) Right now, it takes over rb_wait_for_single_fd() and rb_waitpid() function if the running Fiber is auto-enabled (cont.c::rb_fiber_auto_sched_p) Changes to existing functions are minimal. New files (all new structs and relations should be documented): iom.h - internal API for the rest of RubyVM (incomplete?) iom_internal.h - internal header for iom_(select|epoll|kqueue).h iom_epoll.h - epoll-specific pieces iom_kqueue.h - kqueue-specific pieces iom_select.h - select-specific pieces iom_pingable_common.h - common code for iom_(epoll|kqueue).h iom_common.h - common footer for iom_(select|epoll|kqueue).h Changes to existing data structures: rb_thread_t.afrunq - list of fibers to auto-resume rb_vm_t.iom - Ruby I/O Manager (rb_iom_t) :) Besides rb_iom_t, all the new structs are stack-only and relies extensively on ccan/list for branch-less, O(1) insert/delete. As usual, understanding the data structures first should help you understand the code. Right now, I reuse some static functions in thread.c, so thread.c includes iom_(select|epoll|kqueue).h TODO: Hijack other blocking functions (IO.select, ...) I am using "double" for timeout since it is more convenient for arithmetic like parts of thread.c. Most platforms have good FP, I think. Also, all "blocking" functions (rb_iom_wait*) will have timeout support. ./configure gains a new --with-iom=(select|epoll|kqueue) switch libkqueue: libkqueue support is incomplete; corner cases are not handled well: 1) multiple fibers waiting on the same FD 2) waiting for both read and write events on the same FD Bugfixes to libkqueue may be necessary to support all corner cases. Supporting these corner cases for native kqueue was challenging, even. See comments on iom_kqueue.h and iom_epoll.h for nuances. Limitations Test script I used to download a file from my server: ----8<--- require 'net/http' require 'uri' require 'digest/sha1' require 'fiber' url = 'http://80x24.org/git-i-forgot-to-pack/objects/pack/pack-97b25a76c03b489d4cbbd85b12d0e1ad28717e55.idx' uri = URI(url) use_ssl = "https" == uri.scheme fibs = 10.times.map do Fiber.start do cur = Fiber.current.object_id # XXX getaddrinfo() and connect() are blocking # XXX resolv/replace + connect_nonblock Net::HTTP.start(uri.host, uri.port, use_ssl: use_ssl) do |http| req = Net::HTTP::Get.new(uri) http.request(req) do |res| dig = Digest::SHA1.new res.read_body do |buf| dig.update(buf) #warn "#{cur} #{buf.bytesize}\n" end warn "#{cur} #{dig.hexdigest}\n" end end warn "done\n" :done end end warn "joining #{Time.now}\n" fibs[-1].join(4) warn "joined #{Time.now}\n" all = fibs.dup warn "1 joined, wait for the rest\n" until fibs.empty? fibs.each(&:join) fibs.keep_if(&:alive?) warn fibs.inspect end p all.map(&:value) Fiber.new do puts 'HI' end.run.join ``` ---Files-------------------------------- 0001-auto-fiber-schedule-for-rb_wait_for_single_fd-and-rb.patch (82.8 KB) -- https://bugs.ruby-lang.org/ Unsubscribe: