From: jzakiya@...
Date: 2018-01-30T18:01:29+00:00
Subject: [ruby-core:85261] [Ruby trunk Feature#14383] Making prime_division in prime.rb Ruby 3 ready.

Issue #14383 has been updated by jzakiya (Jabari Zakiya).


FYI, I re-ran the examples above (and an additional one) using the `Miller-Rabin` 
implementation in my `primes-utls` 3.0 development branch. Not only is it 
deterministic up to about 25-digits, but it's way faster too. It can probably be 
made faster by using a `WITNESS_RANGES` list with fewer witnesses, and can now 
be easily extended as optimum witnesses are found for larger number ranges.  

I provide this to raise the issue that absolute determinism for a primality test 
function maybe shouldn't be an absolute criteria for selection. Of course, it is 
the ideal, but sometimes `striving for perfection can be the enemy of good enough`. 

Again, hybrid methods may be able to combine the best of all worlds.

```
> n= (10**100+267); tm{ p n.primesmr n+5000 }
 => 0.056422744 3.0 dev
 => 0.06310091  2.7

> n= (10**1000+267); tm{ p n.primesmr n+5000 }
 => 7.493292636  3.0 dev
 => 11.089284953 2.7

> n= (10**2000+267); tm{ p n.primesmr n+5000 }
 => 36.614877874 3.0 dev
 => 56.129938705 2.7

> n= (10**3000+267); tm{ p n.primesmr n+5000 }  => 10000000000........1027
 => 192.866720666 3.0 dev
 => 286.244139793 2.7
```

```
# Miller-Rabin version in Primes-Utils 2.7

def primemr?(k=20)  # increase k for more reliability
  n = self.abs
  return true  if [2,3].include? n
  return false unless [1,5].include?(n%6) and n > 1

  d = n - 1
  s = 0
  (d >>= 1; s += 1) while d.even?
  k.times do
    a = 2 + rand(n-4)
    x = a.to_bn.mod_exp(d,n)    # x = (a**d) mod n
    next if x == 1 or x == n-1
    (s-1).times do
      x = x.mod_exp(2,n)        # x = (x**2) mod n
      return false if x == 1
      break if x == n-1
    end
    return false if x != n-1
  end
  true  # n is prime (with high probability)
end
```

```
# Miller-Rabin version in Primes-Utils 3.0 dev

# Returns true if +self+ is a prime number, else returns false.
def primemr?
  primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43]
  return primes.include? self if self <= primes.last
  return false unless primes.reduce(:*).gcd(self) == 1
  wits = WITNESS_RANGES.find {|range, wits| range > self}  # [range, [wit_prms]] or nil
  witnesses = wits && wits[1] || primes
  witnesses.each {|p| return false unless miller_rabin_test(p) }
  true
end

private
# Returns true if +self+ passes Miller-Rabin Test on witness +b+
def miller_rabin_test(b)             # b is a witness to test with
  n = d = self - 1
  d >>= 1 while d.even?
  y = b.to_bn.mod_exp(d, self)       # x = (b**d) mod n
  until d == n || y == n || y == 1
    y = y.mod_exp(2, self)           # y = (y**2) mod self
    d <<= 1
  end
  y == n || d.odd?
end

WITNESS_RANGES = {
  2_047 => [2],
  1_373_653  => [2, 3],
  25_326_001 => [2, 3, 5],
  3_215_031_751 => [2, 3, 5, 7],
  2_152_302_898_747 => [2, 3, 5, 7, 11],
  3_474_749_660_383 => [2, 3, 5, 7, 11, 13],
  341_550_071_728_321 => [2, 3, 5, 7, 11, 13, 17],
  3_825_123_056_546_413_051 => [2, 3, 5, 7, 11, 13, 17, 19, 23],
  318_665_857_834_031_151_167_461 => [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37],
  3_317_044_064_679_887_385_961_981 => [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41]
}
```

----------------------------------------
Feature #14383: Making prime_division in prime.rb Ruby 3 ready.
https://bugs.ruby-lang.org/issues/14383#change-70022

* Author: jzakiya (Jabari Zakiya)
* Status: Open
* Priority: Normal
* Assignee: yugui (Yuki Sonoda)
* Target version: Next Major
----------------------------------------
I have been running old code in Ruby 2.5.0 (released 2017.12.25) to check for
speed and compatibility. I still see the codebase in `prime.rb` hardly has
changed at all (except for replacing `Math.sqrt` with `Integer.sqrt`).

To achieve the Ruby 3 goal to make it at least three times faster than Ruby 2
there are three general areas where Ruby improvements can occur.

* increase the speed of its implementation at the machine level
* rewrite its existing codebase in a more efficient|faster manner
* use faster algorithms to implement routines and functions

I want to suggest how to address the later two ways to improve performance of
specifically the `prime_division` method in the `prime.rb` library.


I've raised and made suggestions to some of these issues here
 [ruby-issues forum](https://bugs.ruby-lang.org/issues/12676) and now hope to invigorate additional discussion.


Hopefully with the release of 2.5.0, and Ruby 3 conceptually closer to reality,
more consideration will be given to coding and algorithmic improvements to
increase its performance too.

**Mathematical correctness**

First I'd like to raise what I consider *math bugs* in `prime_division`, in how
it handles `0` and `-1` inputs.

```
> -1.prime_division
 => [[-1,1]]

> 0.prime_division
Traceback (most recent call last):
        4: from /home/jzakiya/.rvm/rubies/ruby-2.5.0/bin/irb:11:in `<main>'
        3: from (irb):85
        2: from /home/jzakiya/.rvm/rubies/ruby-2.5.0/lib/ruby/2.5.0/prime.rb:30:in `prime_division'
        1: from /home/jzakiya/.rvm/rubies/ruby-2.5.0/lib/ruby/2.5.0/prime.rb:203:in `prime_division'
ZeroDivisionError (ZeroDivisionError)
```
First, `0` is a perfectly respectable integer, and is non-prime, so its output should be `[]`, 
an empty array to denote it has no prime factors. The existing behavior is solely a matter of 
`prime_division`'s' implementation, and does not take this mathematical reality into account.

The output for `-1` is also mathematically wrong because `1` is also non-prime (and correctly 
returns `[]`), well then mathematically so should `-1`.  Thus, `prime_division` treats `-1` as 
a new prime number, and factorization, that has no mathematical basis.  Thus, for mathematical 
correctness and consistency `-1` and `0` should both return `[]`, as none have prime factors.

```
> -1.prime_division
 => []

> 0.prime_division
 => []

> 1.prime_division
 => []
```
There's a very simple one-line fix to `prime_division` to do this:

```
# prime.rb

class Prime

  def prime_division(value, generator = Prime::Generator23.new)
    -- raise ZeroDivisionError if value == 0
    ++ return [] if (value.abs | 1) == 1
```

**Simple Code and Algorithmic Improvements**

As stated above, besides the machine implementation improvements, the other
areas of performance improvements will come from coding rewrites and better
algorithms. Below is the coding of `prime_division`. This coding has existed at
least since Ruby 2.0 (the farthest I've gone back).

```
# prime.rb

class Integer

  # Returns the factorization of +self+.
  #
  # See Prime#prime_division for more details.
  def prime_division(generator = Prime::Generator23.new)
    Prime.prime_division(self, generator)
  end

end

class Prime

  def prime_division(value, generator = Prime::Generator23.new)
    raise ZeroDivisionError if value == 0
    if value < 0
      value = -value
      pv = [[-1, 1]]
    else
      pv = []
    end
    generator.each do |prime|
      count = 0
      while (value1, mod = value.divmod(prime)
             mod) == 0
        value = value1
        count += 1
      end
      if count != 0
        pv.push [prime, count]
      end
      break if value1 <= prime
    end
    if value > 1
      pv.push [value, 1]
    end
    pv
  end

end
```

This can be rewritten in more modern and idiomatic Ruby, to become much shorter
and easier to understand.

```
require 'prime.rb'

class Integer
  def prime_division1(generator = Prime::Generator23.new)
    Prime.prime_division1(self, generator)
  end
end

class Prime

  def prime_division1(value, generator = Prime::Generator23.new)
    # raise ZeroDivisionError if value == 0
    return [] if (value.abs | 1) == 1
    pv = value < 0 ? [[-1, 1]] : []
    value = value.abs
    generator.each do |prime|
      count = 0
      while (value1, mod = value.divmod(prime); mod) == 0
        value = value1
        count += 1
      end
      pv.push [prime, count] unless count == 0
      break if prime > value1
    end
    pv.push [value, 1] if value > 1                 
    pv
  end

end
```
By merely rewriting it we get smaller|concise code, that's easier to understand,
which is slightly faster. A *triple win!* Just paste the above code into a 2.5.0
terminal session, and run the benchmarks below.

```
def tm; s=Time.now; yield; Time.now-s end

 n = 500_000_000_000_000_000_008_244_213; tm{ pp n.prime_division }
[[3623, 1], [61283, 1], [352117631, 1], [6395490847, 1]]
 => 27.02951016

 n = 500_000_000_000_000_000_008_244_213; tm{ pp n.prime_division1 }
[[3623, 1], [61283, 1], [352117631, 1], [6395490847, 1]]
 => 25.959149721
```
Again, we get a *triple win* to this old codebase by merely rewriting it. It can
be made 3x faster by leveraging the `prime?` method from the `OpenSSL` library to
perform a more efficient|faster factoring algorithm, and implementation.

```
require 'prime.rb'
require 'openssl'

class Integer

  def prime_division2(generator = Prime::Generator23.new)
    return [] if (self.abs | 1) == 1
    pv = self < 0 ? [-1] : []
    value = self.abs
    prime = generator.next
    until value.to_bn.prime? or value == 1
      while prime
        (pv << prime; value /= prime; break) if value % prime == 0
        prime = generator.next
      end
    end
    pv << value if value > 1
    pv.group_by {|prm| prm }.map{|prm, exp| [prm, exp.size] }
  end

end
```
Here we're making much better use of Ruby idioms and libraries (`enumerable` and
`openssl`), leading to a much greater performance increase. A bigger *triple win*.
Pasting this code into a 2.5.0 terminal session gives the following results.

```
# Hardware: System76 laptop; I7 cpu @ 3.5GHz, 64-bit Linux

def tm; s=Time.now; yield; Time.now-s end

 n = 500_000_000_000_000_000_008_244_213; tm{ pp n.prime_division }
[[3623, 1], [61283, 1], [352117631, 1], [6395490847, 1]]
 => 27.02951016

 n = 500_000_000_000_000_000_008_244_213; tm{ pp n.prime_division1 }
[[3623, 1], [61283, 1], [352117631, 1], [6395490847, 1]]
 => 25.959149721

 n = 500_000_000_000_000_000_008_244_213; tm{ pp n.prime_division2 }
[[3623, 1], [61283, 1], [352117631, 1], [6395490847, 1]]
 => 9.39650374
```
`prime_division2` is much more usable for significantly larger numbers and use
cases than `prime_division`. I can even do multiple times better than this, if
you review the above cited forum thread.

My emphasis here is to show there are a lot of possible *low hanging fruit*
performance gains ripe for the picking to achieve Ruby 3 performance goals, if we
look (at minimum) for simpler|better code rewrites, and then algorithmic upgrades.

So the question is, are the devs willing to upgrade the codebase to provide the
demonstrated performance increases shown here for `prime_division`?

---Files--------------------------------
bm.rb (1.94 KB)


-- 
https://bugs.ruby-lang.org/

Unsubscribe: <mailto:ruby-core-request@ruby-lang.org?subject=unsubscribe>
<http://lists.ruby-lang.org/cgi-bin/mailman/options/ruby-core>