From: blogger@... Date: 2017-02-21T18:21:23+00:00 Subject: [ruby-core:79649] [Ruby trunk Feature#13219] bug in Math.sqrt(n).to_i, to compute integer squareroot, new word to accurately fix it Issue #13219 has been updated by Nathan Zook. You might want to consider the following articles: https://www.reddit.com/r/algorithms/comments/1zt63v/fast_algorithm_to_calculate_integer_square_root/ Which lead me to wikipedia: https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Binary_numeral_system_.28base_2.29 (You might want to start a bit higher in the article to get the context.) and also to Zimmerman's implementation: https://gmplib.org/repo/gmp-5.1/file/c5010c039373/mpn/generic/sqrtrem.c The wikipedia article implements a faster bit-by-bit computation. Zimmerman implements the standard solution, which converges quadratically. Looking at your comments, however, you seem really to be interested in a high performance multiprecision library for ruby. Is there any particular reason that we should not take an existing C library and drop a wrapper around it? ---------------------------------------- Feature #13219: bug in Math.sqrt(n).to_i, to compute integer squareroot, new word to accurately fix it https://bugs.ruby-lang.org/issues/13219#change-63065 * Author: Jabari Zakiya * Status: Open * Priority: Normal * Assignee: * Target version: ---------------------------------------- In doing a math application using **Math.sqrt(n).to_i** to compute integer squareroots of integers I started noticing errors for numbers > 10**28. I coded an algorithm that accurately computes the integer squareroot for arbirary sized numbers but its significantly slower than the math library written in C. Thus, I request a new method **Math.intsqrt(n)** be created, that is coded in C and part of the core library, that will compute the integer squareroots of integers accurately and fast. Here is working highlevel code to accurately compute the integer squareroot. ``` def intsqrt(n) bits_shift = (n.to_s(2).size)/2 + 1 bitn_mask = root = 1 << bits_shift while true root ^= bitn_mask if (root * root) > n bitn_mask >>= 1 return root if bitn_mask == 0 root |= bitn_mask end end def intsqrt1(n) return n if n | 1 == 1 # if n is 0 or 1 bits_shift = (Math.log2(n).ceil)/2 + 1 bitn_mask = root = 1 << bits_shift while true root ^= bitn_mask if (root * root) > n bitn_mask >>= 1 return root if bitn_mask == 0 root |= bitn_mask end end require "benchmark/ips" Benchmark.ips do |x| n = 10**40 puts "integer squareroot tests for n = #{n}" x.report("intsqrt(n)" ) { intsqrt(n) } x.report("intsqrt1(n)" ) { intsqrt1(n) } x.report("Math.sqrt(n).to_i") { Math.sqrt(n).to_i } x.compare! end ``` Here's why it needs to be done in C. ``` 2.4.0 :178 > load 'intsqrttest.rb' integer squareroot tests for n = 10000000000000000000000000000000000000000 Warming up -------------------------------------- intsqrt(n) 5.318k i/100ms intsqrt1(n) 5.445k i/100ms Math.sqrt(n).to_i 268.281k i/100ms Calculating ------------------------------------- intsqrt(n) 54.219k (�� 5.5%) i/s - 271.218k in 5.017552s intsqrt1(n) 55.872k (�� 5.4%) i/s - 283.140k in 5.082953s Math.sqrt(n).to_i 5.278M (�� 6.1%) i/s - 26.560M in 5.050707s Comparison: Math.sqrt(n).to_i: 5278477.8 i/s intsqrt1(n): 55871.7 i/s - 94.47x slower intsqrt(n): 54219.4 i/s - 97.35x slower => true 2.4.0 :179 > ``` Here are examples of math errors using **Math.sqrt(n).to_i** run on Ruby-2.4.0. ``` 2.4.0 :101 > n = 10**27; puts n, (a = intsqrt(n)), a*a, (b = intsqrt1(n)), b*b, (c = Math.sqrt(n).to_i), c*c 1000000000000000000000000000 31622776601683 999999999999949826038432489 31622776601683 999999999999949826038432489 31622776601683 999999999999949826038432489 => nil 2.4.0 :102 > n = 10**28; puts n, (a = intsqrt(n)), a*a, (b = intsqrt1(n)), b*b, (c = Math.sqrt(n).to_i), c*c 10000000000000000000000000000 100000000000000 10000000000000000000000000000 100000000000000 10000000000000000000000000000 100000000000000 10000000000000000000000000000 => nil 2.4.0 :103 > n = 10**29; puts n, (a = intsqrt(n)), a*a, (b = intsqrt1(n)), b*b, (c = Math.sqrt(n).to_i), c*c 100000000000000000000000000000 316227766016837 99999999999999409792567484569 316227766016837 99999999999999409792567484569 316227766016837 99999999999999409792567484569 => nil 2.4.0 :104 > n = 10**30; puts n, (a = intsqrt(n)), a*a, (b = intsqrt1(n)), b*b, (c = Math.sqrt(n).to_i), c*c 1000000000000000000000000000000 1000000000000000 1000000000000000000000000000000 1000000000000000 1000000000000000000000000000000 1000000000000000 1000000000000000000000000000000 => nil 2.4.0 :105 > n = 10**31; puts n, (a = intsqrt(n)), a*a, (b = intsqrt1(n)), b*b, (c = Math.sqrt(n).to_i), c*c 10000000000000000000000000000000 3162277660168379 9999999999999997900254631487641 3162277660168379 9999999999999997900254631487641 3162277660168379 9999999999999997900254631487641 => nil 2.4.0 :106 > n = 10**32; puts n, (a = intsqrt(n)), a*a, (b = intsqrt1(n)), b*b, (c = Math.sqrt(n).to_i), c*c 100000000000000000000000000000000 10000000000000000 100000000000000000000000000000000 10000000000000000 100000000000000000000000000000000 10000000000000000 100000000000000000000000000000000 => nil 2.4.0 :107 > n = 10**33; puts n, (a = intsqrt(n)), a*a, (b = intsqrt1(n)), b*b, (c = Math.sqrt(n).to_i), c*c 1000000000000000000000000000000000 31622776601683793 999999999999999979762122758866849 31622776601683793 999999999999999979762122758866849 31622776601683792 999999999999999916516569555499264 => nil 2.4.0 :108 > n = 10**34; puts n, (a = intsqrt(n)), a*a, (b = intsqrt1(n)), b*b, (c = Math.sqrt(n).to_i), c*c 10000000000000000000000000000000000 100000000000000000 10000000000000000000000000000000000 100000000000000000 10000000000000000000000000000000000 100000000000000000 10000000000000000000000000000000000 => nil 2.4.0 :109 > n = 10**35; puts n, (a = intsqrt(n)), a*a, (b = intsqrt1(n)), b*b, (c = Math.sqrt(n).to_i), c*c 100000000000000000000000000000000000 316227766016837933 99999999999999999873578871987712489 316227766016837933 99999999999999999873578871987712489 316227766016837952 100000000000000011890233980627554304 => nil 2.4.0 :110 > n = 10**36; puts n, (a = intsqrt(n)), a*a, (b = intsqrt1(n)), b*b, (c = Math.sqrt(n).to_i), c*c 1000000000000000000000000000000000000 1000000000000000000 1000000000000000000000000000000000000 1000000000000000000 1000000000000000000000000000000000000 1000000000000000000 1000000000000000000000000000000000000 => nil 2.4.0 :111 > n = 10**37; puts n, (a = intsqrt(n)), a*a, (b = intsqrt1(n)), b*b, (c = Math.sqrt(n).to_i), c*c 10000000000000000000000000000000000000 3162277660168379331 9999999999999999993682442519108007561 3162277660168379331 9999999999999999993682442519108007561 3162277660168379392 10000000000000000379480317059650289664 => nil 2.4.0 :112 > ``` -- https://bugs.ruby-lang.org/ Unsubscribe: <mailto:ruby-core-request@ruby-lang.org?subject=unsubscribe> <http://lists.ruby-lang.org/cgi-bin/mailman/options/ruby-core>